A Neural Network Assembly Memory Model Based on an Optimal Binary Signal Detection Theory
نویسنده
چکیده
A ternary/binary data coding algorithm and conditions under which Hopfield networks implement optimal convolutional and Hamming decoding algorithms has been described. Using the coding/decoding approach (an optimal Binary Signal Detection Theory, BSDT) introduced a Neural Network Assembly Memory Model (NNAMM) is built. The model provides optimal (the best) basic memory performance and demands the use of a new memory unit architecture with two-layer Hopfield network, N-channel time gate, auxiliary reference memory, and two nested feedback loops. NNAMM explicitly describes the dependence on time of a memory trace retrieval, gives a possibility of metamemory simulation, generalized knowledge representation, and distinct description of conscious and unconscious mental processes. A model of smallest inseparable part or an atom of consciousness is also defined. The NNAMMs neurobiological backgrounds and its applications to solving some interdisciplinary problems are shortly discussed. BSDT could implement the best neural code used in nervous tissues of animals and humans.
منابع مشابه
Sensitivity and Bias within the Binary Signal Detection Theory, Bsdt
Similar to classic Signal Detection Theory (SDT), recent optimal Binary Signal Detection Theory (BSDT) and based on it Neural Network Assembly Memory Model (NNAMM) can successfully reproduce Receiver Operating Characteristic (ROC) curves although BSDT/NNAMM parameters (intensity of cue and neuron threshold) and classic SDT parameters (perception distance and response bias) are essentially diffe...
متن کاملAnalysis and Diagnosis of Partial Discharge of Power Capacitors Using Extension Neural Network Algorithm and Synchronous Detection Based Chaos Theory
Power capacitors are important equipment of the power systems that are being operated in high voltage levels at high temperatures for long periods. As time goes on, their insulation fracture rate increases, and partial discharge is the most important cause of their fracture. Therefore, fast and accurate methods have great importance to accurately diagnosis the partial discharge. Conventional me...
متن کاملOptimal Rotor Fault Detection in Induction Motor Using Particle-Swarm Optimization Optimized Neural Network
This study examined and presents an effective method for detection of failure of conductor bars in the winding of rotor of induction motor in low load conditions using neural networks of radial-base functions. The proposed method used Hilbert method to obtain the stator current signal push. The frequency and signal amplitude of the push stator were used as the input of the neural network and th...
متن کاملSignal Prediction by Layered Feed - Forward Neural Network (RESEARCH NOTE).
In this paper a nonparametric neural network (NN) technique for prediction of future values of a signal based on its past history is presented. This approach bypasses modeling, identification, and parameter estimation phases that are required by conventional parametric techniques. A multi-layer feed forward NN is employed. It develops an internal model of the signal through a training operation...
متن کاملDamage detection and structural health monitoring of ST-37 plate using smart materials and signal processing by artificial neural networks
Structural health monitoring (SHM) systems operate online and test different materials using ultrasonic guided waves and piezoelectric smart materials. These systems are permanently installed on the structures and display information on the monitor screen. The user informs the engineers of the existing damage after observing signal loss which appears after damage is caused. In this paper health...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره cs.AI/0309036 شماره
صفحات -
تاریخ انتشار 2003